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Abstract

Background: With the increasing efforts to a better understanding of psychiatric diseases, detection of brain
morphological alterations is necessary. This study compared two methods—voxel-based morphometry (VBM) and
region of interest (ROI) analyses—to identify significant gray matter changes of patients with bipolar disorder type I
(BP I).

Results: The VBM findings suggested gray matter reductions in the left precentral gyrus and right precuneus of the
patients compared to healthy subjects (α = 0.0005, uncorrected). However, no regions reached the level of
significance in ROI analysis using the three atlases, i.e., hammers, lpba40, and neuromorphometrics atlases (α =
0.0005).

Conclusion: It can be concluded that VBM analysis seems to be more sensitive to partial changes in this study. If
ROI analysis is employed in studies to detect structural brain alterations between groups, it is highly recommended
to use VBM analysis besides.

Keywords: Voxel-based morphometry, ROI analysis, Bipolar disorder, MRI, Brain
Background
The brain is not a rigid organ, and its structures change
by different kinds of experiences and diseases.
Localization of structural brain changes on magnetic res-
onance imaging (MRI) scans is a laborious issue in psy-
chiatric diseases [1, 2]. Many investigators have been
using MRI scans as a tool for diagnosis of neurological
diseases or tracking disease progression, etc. Therefore,
to help them, automated methods have been replaced to
identify brain changes without the need for time-
consuming manual measurement, and have grown in
popularity since their introduction.
One of these automated methods is voxel-based

morphometry (VBM) introduced by Ashburner and
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Friston [3]. This method is objective and able to perform
a voxel-wise estimation to localize changes of a specific
tissue. VBM commonly uses T1-weighted MRI scans
and performs statistical tests across all voxels in the
image to identify volume differences between groups. In
VBM, there are three main preprocessing steps before
statistical tests: segmentation, normalization, and
smoothing.
The first step in preprocessing is segmentation. In this

step, gray matter (GM), white matter (WM), cerebro-
spinal fluid (CSF), and other tissues are extracted. Once
an original brain image is used, it is primarily corrected
for inhomogeneity of the magnetic field which affects
the intensity values of the image voxel. This correction
is called bias correction. Another factor that should be
well addressed is the partial volume effect. The effect
can occur at the boundaries of the tissues whose
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intensity values overlap [4]. By these corrections, the
segmented tissue maps are produced.
To compare tissue-segmented images, the images

must be normalized. Normalization ascertains that dif-
ferent brain sizes, different head positions, and some-
what different brain shapes of the subjects during MR
imaging are corrected using linear and nonlinear nor-
malizations although small differences still remain.
The final step of preprocessing is smoothing. In this

step, the normalized segmented images are convolved
with an isotropic Gaussian kernel. The output is a
weighted average of each voxel’s neighborhood. The
underlying reasons for using smoothing are an increase
of normality of residuals and signal to noise ratio and
decrease of effect of misregistration between images [5].
After preprocessing, statistical analysis is performed

on the images. It can be parametric using general linear
model [3] or nonparametric [6, 7]. A statistical test dem-
onstrates alterations in tissue volume between subject
groups to a user-selected p value. To remove false posi-
tives from the results, some methods such as family-wise
error (FWE) correction or false discovery rate (FDR)
correction could be applied [8, 9]. The final result is a
statistical map localizing differences of a specified tissue
between groups.
Three approaches of VBM include standard, opti-

mized, and DARTEL (Diffeomorphic Anatomic Registra-
tion Through Exponentiated Lie algebra algorithm)
[10–12]. The three approaches of VBM have been de-
scribed in the literatures in detail [13, 14]. The difference
between DARTEL and two first approaches is that using
DARTEL, the high dimensional wrapping process was
performed [13]. Therefore, misregistration and inaccur-
acies are reduced more between the template and indi-
vidual images as well as credibility of the research is
increased [15, 16].
The other method is an automated ROI analysis [17].

To perform this analysis, probabilistic brain atlases are
employed. Probabilistic atlasing is a technique that
generates anatomical templates and retains quantitative
information on inter-subject variations across the popu-
lation used to construct the atlas [18]. Using these at-
lases, it may solve problems of manual ROI assessment
and increase repeatability of studies. Examples of these
atlases are hammers, lpba40, and neuromorphometrics
which are described below.
The three atlases are created using a label-based ap-

proach and based on multiple subjects. They are created
using manual tracing on anatomical MRI from healthy
subjects. The individual subject classifications are then
registered to MNI space to generate a probabilistic atlas.
The hammers, lpba40, and neuromorphometrics are
composed of 69, 40, and 140 regions, respectively. These
regions cover the whole cortex and the main subcortical
structures. The probabilistic brain atlases have been de-
tailed in the literatures [19–21].
More recently, the abovementioned automatic

methods are being increasingly applied to detect the
brain volumetric alterations [22] in psychiatric diseases
such as Alzheimer’s disease [23, 24], epilepsy [25], Par-
kinson’s disease [26], and bipolar disorder [27, 28].
In this regard, Lagopoulos et al. found that there

were potential changes in the WM content of the
corpus callosum of BP I patients in the early stage of
the disease using structural MRI and DTI and FSL
software [29]. Several investigations indicated the
WM and GM changes in different parts of BP pa-
tients’ brains including the amygdala, hippocampus,
and temporal and frontal lobes [30, 31]. Also, Mahon
et al. proposed that deficits in dorsolateral prefrontal
and limbic cortical structures were the main manifes-
tations of BP disorder [32].
The present study had three objectives. The primary

aim was to apply DARTEL VBM to detect structural
GM changes in patients with BP I in comparison to
the healthy group. The second aim was to compare
the three probabilistic brain atlases, i.e., hammers,
lpba40, and neuromorphometrics atlases. The final
aim of this study was to assess these methods, i.e.,
VBM versus ROI analyses. It is hypothesized that a
VBM analysis of the same data would complement
the ROI findings. In the present study, we used Com-
putational Anatomy Toolbox (CAT12) which is an ex-
tension to the SPM12 software package (Statistical
Parametric Mapping).
Methods
Subjects
The subjects of the present study were 25 patients and
25 healthy people. It was conducted February 2017 to
December 2018. Patients with BP I were selected by
interview based on DSM-IV-TR criteria, direct assess-
ment by two psychiatrists and medical records. Subjects
were excluded if they had a history of substance misuse,
neurological disease, or closed head injury. All patients
were at their late remissions. They took lithium/valpro-
ate and antipsychotic medication. The most and the
least numbers of the episodes were 17 and 1, respect-
ively. The median number of episodes was 2.
The healthy group was included from a pool of com-

munity volunteers and assessed with the same criteria as
the patient group as well as a lack of family psychiatric
history. Table 1 summarizes details of the demographic
characteristics of the patient and healthy groups.
Written informed consent was obtained from all partici-
pants, and the study was approved by the local ethics
committee.



Table 1 Demographic characteristics of participants

Group Age (years) (mean ± SD) Female/male

HGa 34.48 ± 8.32 19/6

PGb 37.68 ± 10.88 18/7
aHealthy group
bPatient group
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MRI acquisition
High-resolution T1-weighted structural MR images were
acquired at Qaem Hospital, Mashhad, Iran, using a 1.5-
T symphony scanner (Siemens, Erlangen, Germany) with
MP RAGE sequence (TR = 2300 ms, TE = 2.98 ms, flip
angle = 98°, field of view = 256mm × 256 mm × 170mm,
acquisition matrix = 256 × 256, slice thickness = 1.27
mm) and the Digital Imaging and Communications in
Medicine (DICOM) format.

Voxel-based morphometry
For VBM analysis, the CAT12 toolbox implemented in
SPM12 software was employed. The software was run in
MATLAB version 9.3 (The MathWorks, MA, USA). All
3D T1-weighted MR images were converted into the
Neuroimaging Informatics Technology Initiative (NIFTI)
format through SPM12. The images were spatially nor-
malized and segmented into GM, WM, and CSF tissue
classes according to the DARTEL approach with default
settings in 1.5 mm cubic resolution and MNI space. The
normalized maps were modulated with the resulting
Jacobian determinant maps to preserve GM volumes of
native space and smoothed with an 8-mm FWHM
Gaussian kernel. The steps of segmentation,
normalization, and modulation were automatically done
in tandem in the CAT12 toolbox. Total intracranial vol-
ume (TIV) and the native space volumes of GM, WM,
and CSF maps were estimated as well.
In order to compare the results with ROI results,

the GLM analysis was used with TIV as a covariate
of no interest because, in ROI analysis, the effect of
TIV was corrected. The two-tailed t test was then
generated using family-wise error (FWE) correction
with a p < 0.05 and additionally with uncorrected p <
0.0005 thresholds. The extent threshold was set at
100 voxels. The processing framework of VBM ana-
lysis is shown in Fig. 1.

ROI analysis
Using CAT12, regional tissue volumes were estimated in
different regions based on the probabilistic atlases. All
volumes are approximated in their native space using a
high-dimensional spatial registration before any spatial
normalization. By extracting data, GM volumes of differ-
ent structures were determined. To remove the effect of
variations in brain sizes, GM volumes of different struc-
tures were divided into TIV of the related subject, and
then, the GM ratio of each region was obtained. The
Mann-Whitney U test was used at the significance level
of 0.05% (i.e., α = 0.0005, Bonferroni correction) for
comparison of two groups using SPSS software, version
16 (IBM-SPSS, Armonk, NY, USA).

Results
The VBM analysis
In voxel by voxel analysis, no region showed significant
alteration in healthy controls versus patients using FWE
with p value < 0.05 in the t test. Nonetheless, when an
uncorrected p value < 0.0005 was applied, two regions
demonstrated lower GM ratios in the patients compared
to the healthy subjects in the two-tailed t test. It should
be indicated that when the contrast, patients > healthy
subjects, was selected, no brain regions exhibited signifi-
cant alterations in the patients over the healthy controls.
Figure 2 and Table 2 detail the related regions and MNI
coordinates of the peak voxels.

ROI analyses
To compare the results of the ROI with those of VBM,
the significant level of α < 0.0005 was selected. None of
the probabilistic brain atlases demonstrated a significant
difference in GM ratios between the two groups.

Discussion
Within VBM analysis
We performed a two-tailed t test with a covariate of no
interest (i.e., TIV) and compared the bipolar patients
over the healthy controls in Table 2. Using p < 0.05 cor-
rected, VBM analysis indicated no significant changes in
GM volumes of the patients compared to those of the
healthy subjects. The reverse contrast had the same re-
sult, as well. While the bipolar patients showed a signifi-
cantly lower volume of GM in the left precentral gyrus
and right precuneus than the healthy subjects, no region
was higher in the patients than the controls using p <
0.0005 uncorrected and extent threshold of 100.
To compare our VBM results with other studies’ re-

sults, it should be noted that the results of VBM analyses
of bipolar disorder are contradictory. Some studies re-
ported no significant differences in gray matter volumes
between patients and healthy subjects [33, 34] while
other studies indicated alterations in different regions of
the brain such as frontal gyrus [35, 36], and temporal
and parietal gyrus [37]. Besides, no study could replicate
the same findings of previous studies. The reason for
this may stem from using different procedures, thresh-
olds, kernels, sample size, and statistical corrections, as
well as different inclusion criteria. Another reason can
be that perhaps there are different subgroups in BP I,
which have the same clinical manifestation but different
mechanisms and origins. Overall, reported abnormalities



Fig. 1 The processing framework of VBM analysis using the CAT12 toolbox of SPM12 software
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of gray matter volumes are highly dispersed in bipolar
disorder.
Taken all together, our VBM results are somewhat

similar to the fMRI study in which abnormalities in the
precuneus has been reported [38]. In the mentioned
study, it was implicated that patients with bipolar dis-
order showed less activation posterior cingulate cortex/
precuneus compared to healthy controls. The precuneus
is responsible for a wide range of cognitive functions
including recollection and memory, integration of infor-
mation related to the perception of the environment,
cue reactivity, mental imagery strategies, episodic mem-
ory retrieval, and affective responses to pain [39]. The
Fig. 2 The significant GM alterations revealed by VBM analyses with the co
precuneus when HG > PG. p value < 0.0005(uncorrected) and extent thresh
alteration in the functions of the precuneus may alter
self-perception as well as the perception of the environ-
ment, resulting in behavioral changes that are evident in
different episodes of BP.
Also, Eker et al. mentioned a gray matter deficit in pa-

tients with bipolar disorder in comparison to unrelated
healthy subjects in the left precentral gyrus but right
precuneus [40]. The precentral gyrus is the anatomical
location of the primary motor cortex, responsible for the
control of voluntary movement [41]. GM changes in the
precentral gyrus may affect the primary motor cortex
function and therefore cause less control on voluntary
movement, as can be seen in BP patients.
variate of no interest (TIV) in the a left precentral gyrus and b right
old K = 100



Table 2 GM alterations detected by VBM

P value Contrast Location of the
peak values

Cluster
size
(no. of
voxels)

MNI coordinates t
value
of the
peak
voxels

X (mm) Y (mm) Z (mm)

P < 0.05 corr. HGa > PGb – – – – – –

HG < PG – – – – – –

P < 0.0005 uncorr. HG > PG Left precentral gyrus 1204 − 61.5 − 10.5 43.5 5.115

Right precuneus 122 13.5 − 63 22.5 3.949

HG < PG – – – – – –
aHealthy group
bPatient group
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Within ROI analysis
ROI-based analyses were conducted using the three
probabilistic brain atlases. There were no regions reach-
ing a significant level. However, the detected regions by
VBM come to appear when p value increased to 0.02.
Here, it should be noted that these atlases had several
brain region labels such that some labels were similar
but the other labels were different.

VBM versus ROI
One of the aims of this research was to compare the re-
sults of VBM to the results of the ROI analysis on the
same dataset. For comparison, in VBM, a two-tailed t
test with TIV covariate of no interest was employed be-
cause replicating the main effects on ROI analysis was
interested.
While VBM analysis found two regions of lower GM

ratios—namely the left precentral gyrus and right precu-
neus—in the patient group in comparison to the healthy
group, the ROI analysis showed no difference in GM ra-
tios between the two groups.
The reasons for these different results may stem from

methodological differences between VBM and ROI
methods, which can affect the results. Here, we have dis-
cussed it briefly.
In ROI analysis using a probabilistic atlas, an indi-

vidual brain image was transformed and compared to
the atlas as a template. This transformation may
cause differences between the image and multiple im-
ages constructing the atlas. On the other hand, in a
diseased population, local individual brain regions are
highly variable, and thus, smaller regions or unusual
conformation patterns are more subject to error when
transforming. Therefore, appearing and vanishing of
some differences may be caused due to inappropriate
registration to the atlas.
In contrast to ROI analyses, VBM analysis conducted

with CAT12 using the DARTEL approach enjoys precise
registrations of images to the template to decrease
misregistrations and inaccuracies. Although employing
DARTEL does not yield a perfect registration, many dif-
ferences due to misregistrations vanish and original ana-
tomical alterations are coded. Furthermore, the selection
of the level of significance and extend threshold are two
factors that can have an effect on the results.
Another explanation for this difference is that in

VBM, we search for differences in the image voxel by
voxel rather than one region as a whole just like in ROI
analysis. Consequently, if part of a region had a mild to
moderate GM differences, this region might not reach a
significant level in ROI analysis because the region might
have the normal GM volume as a whole. The volume of
precentral gyrus, for instance, is 6011 voxels in neuro-
morphometrics atlas, but the volume of the alteration
detected by VBM in this region is 1204 voxels. It means
that the volume of the alteration is less than 25% of the
overall volume. Therefore, such a small change may not
be detected by the atlas. But as it could be seen in VBM,
the analysis is able to detect partial abnormalities even
in one region due to voxel by voxel search.
The two methods—VBM and ROI analyses—have ad-

vantages and limitations. VBM seems to succeed in the
detection of partial differences in GM ratios. However,
ROI analysis using the mentioned atlases may be more
successful to detect moderate to severe GM
abnormalities.
To our knowledge, this study is one of the first

studies in patients with BP I using the CAT12 tool-
box. But this study had some limitations. One of the
limitation was the number of patients with BP I avail-
able during research. Another one was the lack of
accessibility to the dataset with predefined GM abnor-
malities. Hence, it is suggested that the similarity be-
tween the results of the two methods is investigated
by the structural MR images with predefined GM
changes with different degrees in severity.

Conclusion
We performed VBM and ROI analyses to detect brain
changes in bipolar patients. DARTEL procedure and
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three probabilistic atlases are used. VBM could detect
small changes. Therefore, it can be concluded that
VBM analysis seems to be more sensitive to partial
changes in this study. If ROI analysis is employed in
studies to detect structural brain alterations between
groups, it is highly recommended to use VBM ana-
lysis besides.
As mentioned, the results of the studies were dispersed

for bipolar disorder. The result of this study emphasized
it too. The divergence between the results highlighted
the necessity of the design of more comprehensive re-
search about bipolar disorder to take into account more
psychiatric factors.
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