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Abstract 

Background  Gut microbiota plays a pivotal role in the gut‑brain axis and can influence neurodevelopment 
and mental health outcomes. This review summarizes the current evidence on the associations between gut micro‑
biota alterations and various psychiatric illnesses.

Main body The composition of the gut microbiome evolves from birth through old age, and disruptions during criti‑
cal periods may increase disease risk. Factors like diet, medications, stress, and infections can disturb the gut micro‑
environment and lead to dysbiosis. Dysbiosis has been linked to conditions like depression, anxiety, autism, ADHD, 
and schizophrenia. Proposed mechanisms involve microbial regulation of neurotransmitters, inflammation, oxidative 
stress, blood‑brain barrier permeability, and the immune system. Therapeutic strategies like probiotics, prebiot‑
ics, and faecal transplantation may modulate the gut‑brain axis and microbial ecosystem. However, more research 
is needed to elucidate the causal microbiota‑psychiatry relationship. Understanding gut‑brain interactions may 
uncover new possibilities for preventing and managing psychiatric disorders.

Conclusion A growing body of research points to a close relationship between gut microbiota and mental health. 
While the field is still emerging, dysbiosis of  gut microbial ecosystem has been associated with various neuropsychi‑
atric conditions. The underlying mechanisms likely involve the microbiota‑gut‑brain axis signalling pathways. Addi‑
tional research with larger samples is required to establish causal links between specific microbial changes and psy‑
chiatric outcomes.
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Background
The gastrointestinal tract and brain are linked through 
a sophisticated, bidirectional communication network 
known as the gut-brain axis [1]. As a result of studies 
demonstrating revealing the substantial impact of gut 
microbiota on signalling connections between the gut 

and brain and its involvement in the gut-brain axis, the 
term was revised to the microbiota-gut-brain axis. This 
axis governs the functions of the central nervous system 
(CNS), gut, and immunity [2]. In healthy individuals, 
gut microbiotas establish stable host-bacterial mutual-
ism. Any disruption to this mutualism would adversely 
affect the functioning of the brain, digestive system, and 
metabolism [2]. Bidirectional signalling between the 
gut microbiota and the CNS can affect the reaction to 
stress, feelings of pain, neurochemical amounts, and gut-
brain axis disorders [1, 3]. The interaction between the 
gut microbiome and the nervous system involves meta-
bolic processes such as tryptophan, serotonin, immunity, 
gut hormonal, and short-chain fatty acid metabolism 
(SCFAs) [4]. SCFAs play a crucial role in regulating 
the release of important neurotransmitters, including 
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enteroendocrine serotonin (5-HT) and peptide YY 
(PYY), a neuropeptide critical to the gut-brain axis [5]. 
Research has demonstrated that the intestinal microbiota 
can influence the behaviour of germ-free (GF) animals 
and alter the physiology and biochemical properties of 
the nervous system [6].

The hypothalamic-pituitary-adrenal axis (HPA) is a piv-
otal component of the neuroendocrine system, regulat-
ing various physiological processes, including digestion, 
immunity, behaviour, and stress responsiveness. Abnor-
mal development of the HPA is observed in GF rodents, 
leading to a modified stress response and decreased 
expression of brain-derived neurotrophic factor (BDNF) 
[7]. If GF mice are colonized with normal gastrointestinal 
microbiota from conventionally reared mice or the probi-
otic Bifidobacterium infantis, these abnormalities might 
be reversible [7]. These findings underscore the regula-
tory role of gut microbiota in HPA activity and empha-
size its critical contribution to the development of the 
nervous system.

Gut microbiota and brain development
While the human body is nearly sterile at birth, the gut 
is quickly colonized by bacteria. This colonization pro-
cess continues throughout childhood and adolescence. 
Consequently, establishing and progressing intestinal 
microbiota during infancy may shape an individual’s 
future physical and mental well-being. Brain develop-
ment throughout childhood and adolescence is of equal 
importance, mirroring the progression and maturation of 
intestinal microbiota. Potential disruptions in the mutu-
alism between the host and microbiota during these peri-
ods may have long-lasting health effects, increase the risk 
of neurodevelopmental disorders, and modify gut-brain 
axis pathways. Moreover, the fragility and immaturity of 
intestinal microbiota during these stages render individu-
als more susceptible to environmental influences, includ-
ing antibiotics, stress, inadequate nutrition, infections, 
and more. This susceptibility leads to gut microbiota dys-
biosis, which is detrimental to physical and mental health 
and ultimately contributes to brain disorders [8]. Despite 
the fact that gut microbiota is typically more established 
and stable in maturity, synaptic pruning and myelination 
still take place [9]. Changes in intestinal microbiota that 
occur during this period may therefore influence brain 
function and behaviour. It is critical to preserve a robust 
intestinal microbiota during all stages of development, 
maturation, and colonization to avert age-related brain 
diseases.

Even though the ageing process does not represent a 
pivotal phase in neurodevelopment, inflammation is a 
prevalent occurrence within the body [10]. It manifests 
as a progressive chronic proinflammatory response. The 

progressive alteration of gut microbiota composition [11] 
caused by this response degrades the stability and diver-
sity of microbiota [12]. The gut microbiota composition 
in older adults is frequently influenced by factors such as 
the living environment, dietary patterns, and individual 
health status [12]. Furthermore, factors such as drug 
use, impaired immunity, malabsorption of nutrients, and 
deterioration of digestive motility have an effect on the 
composition of the gut microbiota [13].

Role of microbiota in brain function
Microbiota produce different neuroactive molecules or 
neurotransmitters that maintain the communication 
between gut and brain such as acetylcholine, GABA, 
and serotonin [14, 15]. Interestingly, 90% of serotonin 
required for mood, behaviour, sleep, and other CNS 
functions is produced in the gut [16]. Serotonin bind-
ing to 5-HT receptors on the microglia induces another 
mechanism for gut-induced modulation of neuroinflam-
mation [17]. Similarly, tryptophan, which is a serotonin 
precursor, can influence microglia activity and the tran-
scriptional programme of astrocytes [18].

In addition, bacterial fermentation of indigestible die-
tary fibres produces SCFAs such as butyrate, propionate, 
and acetate [19]. A small fraction of SCFAs reaches the 
systemic circulation and cross the blood-brain barrier 
(BBB) restoring its integrity [20]. Moreover, SCFAs can 
restore the normal maturation process of the microglia 
[21] and modulate neurotransmitters, like glutamate, glu-
tamine, GABA, and neurotrophic factors [22]. Propionate 
and butyrate can influence the cell signalling system and 
regulate the expression levels of tryptophan 5-hydroxy-
lase 1, involved in the synthesis of serotonin, and tyros-
ine hydroxylase, which is involved in the biosynthesis of 
dopamine, adrenaline, and noradrenaline [23].

Impact of the mode of delivery on microbiota 
composition
The “sterile womb dogma” held for an extended period 
that the human foetus remains sterile until delivery, and 
that microorganisms begin to colonize gastrointestinal 
tract after delivery. However, previous research reported 
that microbial colonization begins in utero [24–26]. 
Colonization by Staphylococcus epidermidis, Enterococ-
cus faecium, and Escherichia coli might occur through 
translocation via the bloodstream and placenta from the 
mother’s gut [8]. Vaginal versus caesarean section (CS) 
delivery mode significantly impacts newborn GI tract 
colonization [27, 28]. Despite lack of medical indication, 
CS rates continue rising, exceeding 50% in some coun-
tries [29].

Vaginally delivered (VD) infants’ gut microbiota 
resembles the maternal vaginal microbiota, dominated 
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by Lactobacillus. Meanwhile, CS leads to an imbalance 
and decreased diversity, lacking exposure to the vagi-
nal microbiota of mother. Pathogens from the hospital 
dominate initial contact [30]. Infants delivered vagi-
nally have higher Sneathia, Bacteroides, Corynebac-
terium, Staphylococcus, Clostridium difficile, lower 
Lactobacillus, Prevotella, and Bifidobacteria, com-
pared to those born by CS [27]. Colonization of micro-
biota plays a vital role in infant metabolism, immunity, 
and brain development [31]. Maternal stress may also 
impact infant nervous system development by altering 
vaginal microbiota and subsequent intestinal coloniza-
tion [32].

Factors affecting the changes of gut microbiota 
in psychiatric diseases (see Fig. 1)
Diet
Diet powerfully impacts the diversity and immunology 
of microbiota [33]. The Mediterranean diet with fish 
oil reduced symptoms of depression in one study [34]. 
However, another study found that vegetarian/vegan 
diets were associated with increased depression risk 
[35]. The high-fat, low-carbohydrate ketogenic diet 
improved cognition and memory in Alzheimer’s dis-
ease [36]. Despite the hypotheses that obesity is asso-
ciated with increased Firmicutes/Bacteroidetes ratio, 
weight loss diets did not significantly alter this ratio 
[37]. However, the effect of diet-driven microbiota 
changes on the colon health and metabolism requires 
further studies [38].

Probiotics
Probiotics could be used in treatment of mental disor-
ders which involve increased intestinal permeability like 
depression, anxiety, autism, and schizophrenia [39, 40]. 
Specific strains differentially impact the brain. A meta-
analysis found that probiotics significantly alleviate 
symptoms of depression [41]. In healthy volunteers, Lac-
tobacillus helveticus R0052 and Bifidobacterium longum 
R0175 given for 30 days reduced Hospital Anxiety and 
Depression Scale scores versus placebo [42]. Also, other 
strains like Lactococcus lactis, B. longum, Lactobacil-
lus bulgaricus, Bifidobacterium animalis, Streptococ-
cus thermophilus, and L. helveticus decrease depression 
and stress [43]. Probiotics decreased inflammation and 
improved behavioural symptoms in patients with autism 
spectrum disorder (ASD) [44]. In schizophrenia, probiot-
ics with vitamin D given for 12 weeks improved Positive 
and Negative Syndrome Scale (PANSS) scores, suggest-
ing utility countering gastrointestinal inflammation [45]. 
Probiotics may also improve COVID-19-associated 
mood disturbances by restoring intestinal balance and 
preventing pathogen overgrowth [46, 47]. However, limi-
tations exist, like avoiding probiotics in immunocompro-
mised patients on corticosteroids [46].

Stress
The HPA axis dysregulation from early-life stressors 
increases risk for affective and anxiety disorders [48]. 
Corticotropin-releasing hormone (CRH) and argi-
nine vasopressin (AVP) drive the HPA axis, influenc-
ing neurotransmission, sleep, mood, and feeding [49]. 

Fig. 1 Factors affecting gut microbiota composition and the psychiatric diseases affected by dysbiosis
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Communication between the nervous and endocrine sys-
tems regulates body functions [50]. Depressive disorders 
also show serotonin deficiency and HPA axis hyperactiv-
ity [51]. Stress reduces Lactobacillus and Bifidobacterium 
and increases Clostridium and Escherichia coli through 
catecholamine and glucocorticoid secretion [52].

Circadian system
The circadian system includes the suprachiasmatic 
nucleus central clock and peripheral clocks like the 
intestine. The gut microbiota shows diurnal fluctuations 
affected by shift work, light, sleep, diet, and stress [53]. 
Disrupting the circadian clock may contribute to psychi-
atric and metabolic disorders by altering gut microbiota 
signalling [54]. Bacterial clocks may also regulate human 
circadian rhythms and behaviour [55].

Occupational and environmental factors
Workplace biological (animal contact), chemical (metal-
working fluids, pesticides), and physical (pressure, travel) 
exposures alter the microbiome [56]. After 30 days at 
sea, sailors showed increased Streptococcus gordonii and 
Klebsiella pneumoniae [57]. Night shift workers had 
increased Firmicutes, Actinobacteria, Dorea, and Faecali 
bacterium versus day workers [54]. These microbiome 
changes could serve as occupational health biomarkers 
[53]. Environmental pollutants like heavy metals, pesti-
cides, polycyclic aromatic hydrocarbons (PAH), and pol-
ychlorinated biphenyls (PCB) also modify the microbiota 
[58]. Early chlorpyrifos exposure caused chronic micro-
glial dysregulation, increasing Alzheimer’s disease risk 
[59]. However, microbes can detoxify xenobiotics, some-
times generating more toxic byproducts [60].

The coronavirus‑19 (COVID‑19)
Depression in COVID-19-infected patients could be 
due to social factors such as the social quarantine or 
pathological factors such as changes in the HPA axis, 
CNS proinflammatory cytokines, microglial produc-
tion of inflammatory cytokines, or injury to the hip-
pocampus [61].

Recently, post-acute COVID-19 syndrome (PACS) or 
long COVID-19 was a recent term used to describe a syn-
drome which is characterized by the persistence of clini-
cal manifestations that persist 4 weeks after the onset of 
acute symptoms of COVID-19. Psychological issues that 
could persist after COVID-19 include anxiety, depres-
sion, insomnia, cognitive impairment, and posttraumatic 
stress disorder (PTSD) [62–68].

Gut microbiota diversity and beneficial bacteria pre-
dominance affect COVID-19 infection. After clearance of 
COVID-19, the gut microbiome remains dysbiotic, with 
fewer beneficial bacteria. Patients with PACS had higher 

levels of Ruminococcus gnavus and Bacteroides vulgatus 
and lower levels of Faecalibacterium prausnitzii. More-
over, patients with PACS who suffer neuropsychiatric 
symptoms had higher level of Clostridium innocuum, and 
Actinomyces naeslundii [69].

Antibiotics, antivirals, antifungals, and steroids, as well 
as diabetes, hypertension, and old age, worsen this dysbi-
osis [70]. Therefore, microbiota modification using probi-
otic could play a potential beneficial role as an adjunctive 
therapy in COVID-19 infection and is still an ongoing 
research process [71].

Role of gut microbiota in psychiatric illnesses
Attention‑deficit hyperactivity disorder (ADHD)
ADHD is a common neurodevelopmental disorder affect-
ing millions of children [72]. Genes for dopamine recep-
tors and transmitters are the main etiological factors 
[73]. Growing evidence indicates a gut-brain connection 
[73]. ADHD patients showed increased Actinobacteria 
(e.g. Bifidobacterium) and reduced Firmicutes versus 
controls, with enhanced dopamine precursor synthesis 
capacity [74]. However, a meta-analysis found no signifi-
cant microbiome differences beyond increased Blautia 
in ADHD, which regulates the metabolism and inflam-
mation [75]. More research is needed in demographically 
diverse cohorts [76] and in assessing ADHD with other 
comorbidity [77–79]. Early probiotic administration like 
Lactobacillus rhamnosus GG may reduce ADHD risk 
by modulating emotional behaviour and GABA recep-
tor expression [80]. Dietary improvements like reducing 
food additives and increasing omega-3 polyunsaturated 
fatty acids (PUFAs) can also minimize ADHD hyperac-
tivity [81].

Autism spectrum disorder (ASD)
ASD is a neurodevelopmental disorder that is hazardous 
and is characterized by gastrointestinal symptoms [82]. 
While genetic factors, gastrointestinal abnormalities, 
inflammation, and environmental exposures are plausible 
contributors, no single factor can account for ASD [83] 
Patients diagnosed with ASD exhibited dysbiosis char-
acterized by a phylum number of Fusobacteria, Verru-
comicrobia, Firmicutes, and Bacteroides, as well as a ratio 
of Firmicutes to Bacteroides. The authors also reported 
that the alterations impact the concentrations of volatile 
organic compounds (VOC) and short-chain fatty acids 
(SCFAs) in individuals diagnosed with ASD. These vola-
tile organic compounds include indole, a precursor to 
serotonin and melatonin and a metabolite of tryptophan 
[83]. Nevertheless, these findings must be interpreted 
with caution due to the potential impact of antibiotic 
therapy or individualized dietary regimens on individuals 
diagnosed with ASD [1].
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Bipolar disorder (BD)
BD is a persistent mood disorder characterized by 
alternating manic and depressive episodes [84]. It was 
clinically observed that longer untreated illness in bipo-
lar I disorder lead to more symptoms severity [85]. On 
the other hand, TRY CAT s are neuroregulatory trypto-
phan catabolites, oxidative and nitrosative stress, and 
immune-inflammatory indicators found in patients 
[86]. Dysbiosis of the gut microbiota could be linked 
to the development of BD [87]. Increased Coriobacte-
riaceae associates with higher cholesterol, while more 
Lactobacilli associates with obesity in BD [88, 89]. 
Reduced Faecalibacterium, an anti-inflammatory com-
mensal, also correlates with BD [90]. Clostridiaceae, 
which produce mood-regulating SCFAs, were four 
times lower in BD [91]. Previous research observed 
Toxoplasma gondii among patients with schizophrenia 
and bipolar disorder [92] that might affect gut micro-
biota in these patients and trigger conditions.

Neurocognitive disorders
Cognitive function preclinical studies, such as GF/GI 
infection models, antibiotic treatment, dietary manip-
ulation, and probiotic treatment, have shown that gut 
microbiota composition affects cognitive function 
[93–96]. Prebiotics can improve emotional attention 
performance in healthy individuals [97], and probiot-
ics can modify brain activity during a comparable test 
[98]. Furthermore, previous research found a signifi-
cant relationship between Alzheimer disease and gut 
microbiota dysbiosis. A higher abundance of Prevotella 
species and lactic acid bacteria was correlated with 
cognition [99]. Targeting gut microbiota for cognitive 
benefits may be effective at age extremes, when brain 
function is vulnerable and in flux, with rapid develop-
ment in infancy and gradual decline in function with a 
steady decline in specific cognitive abilities in old age 
[100]. A small randomized controlled trial revealed 
that microbiota-targeted therapies may benefit age-
related cognitive impairment [101]. Also, previous 
research found cognitive impairment in schizophrenia 
and bipolar [102] that might elicit indirect relation of 
gut microbiota in cognitive impairment. No research 
has been conducted on the effectiveness of microbiota 
supplementation in boosting cognitive development 
in infants. However, preclinical research indicates that 
gut microbiota significantly impacts neurodevelop-
ment throughout important postnatal periods [7, 103, 
104] that might relate to hormonal disturbance. Simi-
larly, previous research found prevalence of psychosis 
and depression in postnatal period was increased and 

mostly related to hormonal impairment especially post-
partum [105, 106].

Major depressive disorder (MDD)
Many of the factors described in the data which estab-
lished a connection between this mental disorder and 
intestinal microbiota components were validated by 
Naseribafrouei et al. [107].

There was a notable increase in the prevalence of MDD 
among patients [106, 108], who were correlated with 
elevated levels of the valeric acid-containing bacterium 
Oscillibacter and the inflammation-associated genus Alis-
tipes. In a mouse model, Zhang et  al. [98] established a 
correlation between dysbiosis of the microbiota and 
systemic inflammation as well as raise intestinal perme-
ability [109]. The alteration of microbiota composition of 
mice caused by endogenous melatonin reduction (EMR) 
included an increase in the relative abundance of Lacto-
bacillus, a decrease in the abundance of Bacteroidetes, 
and a modification in the ratio of Firmicutes/Bacteroi-
detes. Furthermore, EMR rodents exhibited increased 
systemic inflammation and enhanced gut permeabil-
ity, which was manifested as a leaky gut. Utilizing SCFA 
quantification to analyse the microbiota composition of 
individuals diagnosed with MDD may prove effective. 
In a study on the SCFAs profile involving 116 women, it 
was found that 40.52% of the participants reported expe-
riencing depression [110]. The results of the study indi-
cated that the proportion of propionic acid was reduced 
among the participants, while isocaproic acid was higher, 
in comparison to the composition of healthy subjects. 
However, the inability to definitively assert that SCFAs 
contribute to the depressive phenotype was attribut-
able to the small sample size. Studies on animal models 
have established a correlation between the composition 
of intestinal microbiota and personality traits and behav-
iour, including anxiety and depression. After transplant-
ing the gut microbiota of confident Mongolian gerbils 
(Meriones unguiculatus), Gan et al. [111] observed altera-
tions in the behaviour of timid individuals. After “bold 
faecal microbiota” transplantation, timid gerbils fre-
quently displayed courageous behaviour, suggesting a 
correlation between the gut microbiota and the disposi-
tion of the host [112].

Schizophrenia (SCZ)
Schizophrenia is a complex condition affecting emo-
tional, vocational, and cognitive abilities [113]. Viruses, 
cardiovascular, and metabolic diseases increase the 
risk of premature mortality among SCZ patients [114]. 
Owen et  al. identified three distinct dimensions in 
SCZ: negative symptoms, positive symptoms, and 
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cognitive impairment [115]. Moreover, schizophrenia 
could be induced by other medical disease [116] or 
drugs [117, 118].

The objective of neuroimaging and biochemical 
research is to elucidate the pathogenesis of SCZ. So far, 
neurotransmitter dependencies have been found, which 
may explain SCZ clinical manifestations. In this patho-
physiology, dopamine appears to be the most important 
neurotransmitter [119]; however, other studies suggest 
that dopamine had an indirect function and identified 
other neurotransmitter linkages [120, 121]. Kozłowska 
et  al. linked the etiology of SCZ to immune/inflamma-
tory processes, where host alarmins activate signalling 
pathways, causing several infection-induced or sterile 
inflammatory disorders. A rising body of research high-
lights the importance of the glutamatergic system [122]. 
Specifically, the neuregulin 1 gene on 8p12 and the G72 
and G30 genes on 13q33, which activate DAOA, are of 
concern [123]. These genes confirm the neurodevelop-
mental idea of SCZ and the glutamatergic system’s par-
ticipation [124]. Increasing mesolimbic dopaminergic 
transmission and inhibiting glutamatergic transmission 
are known to contribute to favourable SCZ symptoms. 
The growing number of premises suggests that kynurenic 
acid (KYNA) may modulate both pathways [125]. KYNA) 
functions as an α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA) receptor and an antagonist of 
the NMDA receptor complex’s strychnine-independent 
glycine site. SCZ patients have higher CSF KYNA levels, 
according to research. KYNA study revealed its potential 
function in CNS physiology and disease. KYNA influ-
ences CNS function and illness symptoms, although the 
mechanism is unknown. However, significant KYNA 
concentration disparities between sick and healthy indi-
viduals suggest its role in the development of neurologi-
cal and mental diseases [126]. KYNA is difficult to detect 
in the blood due to its low penetration of the blood-brain 
barrier. Therefore, scientists focus on other metabolites 
in the kynurenine pathway. Previous study found a pre-
dicted concentration of 3-hydroxykynureine for reducing 
psychopathological symptoms in the first episode of SCZ 
[127]. The discovery of biological variables that predict 
antipsychotic medication success is promising. Despite 
thorough investigation, there is still no known cure for 
psychotic disorders, including SCZ, and the etiopatho-
genesis of this baffling and incurable disease remains 
unknown [112].

Sleep disorders
Gut microbiota and sleep interact bidirectionally. Micro-
bial colonization in early development coincides with 
critical cognitive phases [128]. Sleep loss alters micro-
biota diversity and composition in adulthood [129, 130]; 

also, short sleep fragmentation impacts gut bacteria and 
metabolism over time [130].

In obstructive sleep apnea, microbiota dysbiosis relates 
to inflammation in children [131]. Foecal transplants 
from sleep apnea mice increase sleep in naive mice, sug-
gesting that the microbiota mediates sleep-wake changes 
[132]. Patients with acute and chronic insomnia show gut 
dysbiosis [133]. Therefore, microbes that produce sleep 
neurochemicals like GABA, serotonin, and histamine 
may hold therapeutic potential [134].

As mentioned early, the circadian disruptions in 
humans and mice alter microbiota diversity [54]. Light 
exposure, melatonin, and microbiota-targeted treatments 
may readjust circadian rhythms [135, 136]. Microbiota 
also relates to sleep disorders in psychiatric conditions 
[137, 138]. Overall, the microbiota-gut-brain axis bidirec-
tionally regulates sleep physiology through various path-
ways [139].

Addiction disorders
Metabolites of gut microbiota have an essential role in 
the substance abuse disorders including SCFAs and bile 
acids. Vagal nerve stimulation, brain-derived neurotropic 
factor, and gut epithelial barrier dysfunction with bacte-
rial translocation represent other factors that link micro-
biota with addiction [140].

Alcohol
Initial gut microbiome studies in substance abuse 
focused heavily on alcohol use. Chronic alcoholics exhibit 
reduced gut microbiome diversity and alter composition 
compared to healthy controls, with fewer beneficial Fir-
micutes (Lactobacilli, Enterococci) and Actinobacteria 
(Bifidobacteria) [141]. Acute alcohol exposure may tem-
porarily disrupt intestinal permeability, enabling bacte-
rial products to enter circulation [142]. This leakage is 
linked to increased depression and cravings in the recov-
ering alcoholics [143]. In a meta-analysis, dopamine, 
GABA, serotonin, and norepinephrine were found to be 
the main neurotransmitters upregulated in the presence 
of alcohol. Alcohol-induced alteration of microbiota can 
have adverse effect on the brain function and play a vital 
role in addiction and alcohol dependence [144].

CNS stimulants
Cocaine induces upregulation of the proinflammatory 
mediators in the GI tract along with a compromise of 
mucosal barrier integrity [145]. Cocaine use is indepen-
dently associated with intestinal dysbiosis and increased 
Bacteroidetes [146] and alteration of Verrucomicrobia 
and Firmicutes [147]. Furthermore, patients with cocaine 
use disorder showed marked dysbiosis of both foecal and 
oral microbiota composition and function [148]. Opioid 
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use correlates with altered gut microbiome composition 
in some studies [149–151] but not in others [152]. Con-
founding factors like polysubstance abuse require further 
research. However, opioids appear to change gut micro-
bial communities and function in ways that may impact 
the drug effects [140].

Anxiety
No published research has examined the relationship 
between gastrointestinal microbiota and any specific 
anxiety disorder. Among the various anxiety disorders, 
obsessive-compulsive disorder has exhibited the strong-
est correlation with infection, particularly respiratory 
tract infection caused by group A beta-hemolytic strepto-
coccus [153], while there is a lack of research examining 
the efficacy of probiotics in patients with obsessive-com-
pulsive disorder. A study on rodents indicates that L. 
rhamnosus may have some potential impact [154]. Lyte 
et  al. discovered that anxiety-like behaviour in rodents 
was induced by subclinical concentrations of the patho-
gen Campylobacter jejuni administered orally via gavage. 
These doses failed to elicit an overt immune response. 
Involvement of brainstem regions, including the nucleus 
tractus solitarius and lateral parabrachial nucleus, in the 
processing that generates autonomic, neuroendocrine, 
and behavioural responses was also observed [155]. 
Bruch examined the Medical Expenditure Panel Survey 
to determine prospectively whether intestinal infection 
is associated with the future onset of an anxiety disor-
der and compelling evidence supporting a correlation 
between intestinal infection and the subsequent onset of 
anxiety [156].

Role of microbiota as a treatment option for psychiatric 
illness
Diet
Food has a substantial impact on the gut microbiota, and 
studies have shown that making dietary modifications in 
a short period of time (24 h) can modify the structure of 
the intestinal microbiota system [157], which could be 
offered as an adjuvant antidepressant medication. It has 
been demonstrated that specific dietary components 
can maintain the gut microbiota’s structural homeosta-
sis; this effect is believed to have clinical implications. 
Patients can alleviate the influence of minor symptoms by 
reducing psychological resistance to treatment through 
nutritional relief. Prebiotics are nondigestible fibres that 
promote the growth of beneficial gut microbes by being 
partially digested in the gastrointestinal tract [42].

Prebiotics
Prebiotics in diet, such as insulins, oligofructose, fructoo-
ligosaccharide (FOS), and galacto-oligosaccharide (GOS), 

could influence the intestinal microbiota ecosystem 
structure, which is drastically diminished in patients with 
depression [158]. Tarr’s experiment in 2015 proved that 
the oligosaccharides 3-sialyllactose (3SL) or 6-sialyllac-
tose (6SL) in human breast milk inhibit the development 
of anxiety [159]. Healthy diet like the Mediterranean diet 
which includes high levels of plant compounds, vitamins, 
minerals, PUFAs, and dietary fibres is recommend for 
patients who suffer depression [34].

Probiotics and psychobiotic
People usually support probiotics’ antidepressant and 
antianxiety properties, but additional confirmation is 
still needed due to inaccuracy and a lack of clinical tables 
[43]. Schnorr and Bachner administered a combination 
of psychotherapy and dietary intervention to an appre-
hensive patient. Instead of hyperglycaemic diets, they 
incorporated meals that were abundant in probiotics. The 
results indicated that this therapeutic regimen decreased 
the prevalence of unfavourable microorganisms (e.g. 
Clostridium), increased the abundance of beneficial 
microorganisms (e.g. Lactobacillus), and improved anxi-
ety and insomnia. Additionally, the drug regimen altered 
the composition and diversity of bacteria [160].

Variable probiotics possess potent stress-modulat-
ing and anxiolytic effects which make those probiot-
ics to be promising living psychobiotics for alleviating 
psychological disorders. They act by maintaining the 
intestinal homeostasis, improving mucosal and sys-
temic immunity, and regulating the metabolism of gut 
microbiota. The main microbial genera with psychobi-
otic characteristics are Lactobacillus, Lactococcus, and 
Bifidobacterium [161].

Aberrant intestinal microbiota diminishes the stability 
of the gastrointestinal barrier, allowing increased entry 
of lipopolysaccharides (LPS) into the body. This, in turn, 
triggers systemic inflammation and a stress response 
[162]. However, probiotic medication can effectively 
prevent damage to the intestinal barrier and enhance its 
function through various mechanisms, ultimately reduc-
ing the reactivity of the HPA axis to stress [163]. Pro-
biotics such as Lactobacillus rhamnosus can regulate 
plasma corticosterone levels induced by excitation and 
alleviate depression by influencing hormones released 
by the vagus nerve and hippocampus, including BDNF 
and oxytocin [164]. Also, the vagal nerve regulates the 
activity of Bifidobacterium infantis, which is associated 
with hormones including acetylcholine and corticoster-
one [7]. It is important to note that different probiotic 
strains may affect individuals differently. For instance, a 
study revealed that the ingestion of Lactobacillus casei 
did not significantly improve health in all patients when 
they were in a healthy state [165]. Notably, the effect of 
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probiotics proved in experiencing anxiety or depression 
[165]. Conversely, in another investigation, healthy sub-
jects consuming a meal containing L. helveticus and B. 
longum for 30 days reported improved stress states and 
negative mood regulation Daily intake of L. casei strain 
Shirota has been shown to enhance gut microbiota com-
position and function, potentially reducing stress expo-
sure symptoms in healthy participants [166].

In addressing treatment-resistant depression (TRD), 
Bamling et  al. employed a unique combination of anti-
depressant treatment with probiotics, magnesium, and 
selective serotonin reuptake inhibitors (SSRIs), resulting 
in a significant improvement in depressive symptoms 
[167]. Additionally, Lactobacillus plantarum JYLP-326 
was reported to alleviate anxiety, depression, and insom-
nia in college students experiencing test anxiety [168]. 
However, the efficacy of probiotics in treating gastroin-
testinal or behavioural symptoms in children with autism 
spectrum disorder (ASD) is limited [169].

Synbiotic
Synbiotics, a combination of prebiotics and probiotics, 
have been found to alleviate depression in patients under-
going haemodialysis. The supplementation of synbiotics 
was associated with increased serum levels of BDNF in a 
subgroup of patients with depression [170, 171].

Engineered bacteria
Engineered bacteria, such as L-4-chlorokynurenine (L-4-
Cl-KYn) expressed by marine bacteria, have been utilized 
to treat depression. Combined with the strain’s native 
enzymes, it enhances the therapeutic effect [172]. Target-
ing peptide release in the intestines could be a promising 
method for integrating with future psychological discov-
eries, focusing on peptide-mediated immune responses, 
enhanced vagal signalling, or regulation of neuropeptide 
expression in specific brain regions. However, intestinal 
peptides face practical limitations, including a brief half-
life and slow traversal of the blood-brain barrier [173]. 
Modified strains with targeted peptide chemistry modi-
fications may enhance the efficacy of intestinal peptides, 
and ongoing efforts aim to improve both modified pep-
tide chain sequences and strain selection [174].

Faecal microbiota transplantation (FMT)
FMT involves transferring foecal microorganisms from 
a donor to a recipient. While FMT has been effective in 
treating microbial structural abnormalities and depres-
sion, it can induce anxiety, depressed behaviours, and 
stress responses in healthy individuals.

Nevertheless, FMT has demonstrated positive out-
comes in treating microbial structural abnormalities 
[175] and depression [176, 177] and reprogramming the 

host’s metabolism [178]. Previous study demonstrated 
that FMT could regulate serotonin levels, reduce gut 
epithelial validation response, and control inflammatory 
response. Additionally, it can affect the variety and eco-
system structure of colon microbiota [179]. FMT has also 
exhibited antidepressant effects on depression induced 
by chronic, unpredictable mild stress in rats, impacting 
various neurotransmitters, inflammatory factors, neu-
rotrophic factors, and glucagon-like peptides [180]. In 
patients with major depression, oral frozen FMT cap-
sules, used as an add-on therapy, significantly improved 
depressive symptoms after 4 weeks of treatment [181].

Irritable bowel syndrome (IBS), a gastrointestinal func-
tional disorder, is a common consequence of depression 
[182]. FMT has been incorporated into typical treat-
ment programmes for IBS, showing significant efficacy 
with remission rates of up to 89% in treated patients 
[183]. Although some negative consequences have been 
observed after FMT treatment due to alterations in the 
intestinal microbiota [184], most of these effects are 
modest [185] or reversible [184].

Conclusions
In conclusion, the gut microbiota plays a fundamental 
role in brain development, with its composition evolv-
ing from birth to ageing. Factors such as diet, stress, 
disrupted circadian rhythms, environmental and occu-
pational factors, and even COVID-19 can influence the 
microbiota composition, leading to dysbiosis implicated 
in various diseases, including those affecting the central 
nervous system. Gut-brain axis and microbiota dysbiosis 
could have a major role in pathogenesis of various mental 
disorders. As a result, the use of psychobiotics and fae-
cal microbiota transplantation has emerged as a potential 
significant aspect of managing psychiatric diseases. Fur-
ther research is still needed to address the exact causal 
link between certain microbiotal changes and various 
psychiatric disorders with further implication on the 
management for these conditions.
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